
Layered
Architecture
Delivers
More Reliable
Automotive
Applications,
Faster
By Roland Krause,
Integrated Computer Solutions

Today’s consumers are used to a rapid pace of innovation. Mobile and web apps can be developed and updated

quickly so there’s always something new to appeal to consumers—a reality that heightens their expectations.

Unfortunately for automotive manufacturers, traditional approaches to developing in-vehicle-infotainment (IVI)

systems are often characterized by long development times. And IVI updates can take months if not years. The

result? Automotive head units, expensive and time-consuming to develop, are somewhat outdated by the time they

first reach the market.

Unimpressed, consumers often spurn
these systems, putting OEMs in a

precarious position. So how can automo-
tive OEMs find market acceptance? How
do they and their Tier-1 providers quickly
build appealing, competitive and secure
infotainment systems without relying
on mobile technologies that don’t meet
automotive safety and security require-
ments? An effective solution is to rely on
a layered software architecture.

With a layered software architecture,
developers create independent compo-
nents that address a specific part of the
functionality of the whole system. These
components communicate through
well-defined and stable interfaces that
allow for high-performing implemen-
tations. This approach necessitates not
only understanding requirements but
also completely understanding the user
experience (UX). The most successful

software projects lead with UX by allowing UX design to guide and dictate all steps
of the implementation process.

Lead with UX
One important requirement for modern applications is that they look intuitively beau-
tiful with meaningful animations and simple, easy-to-recognize graphics and iconog-
raphy. That makes applications easy to use, recognizable and appealing to consumers.
This is especially important for products marketed worldwide as user interfaces (UI)
must be easily translatable into different languages and adaptable to different cultures.

And often they need to function on different devices with a variety of screen sizes and
orientations. Modern UI toolkits have the capabilities to deal with these challenges.
HTML5 with CSS, iOS Swift or the Qt toolkit are very popular choices for cleanly
building a software layer that addresses the look and feel of the application.

Whichever toolkit is used, leading an automotive project with UX design makes all
this possible—and easier than with more-traditional approaches. Modern UX design
supports intuitive, practical workflows that allow users to quickly do what they need to
do without having to actually “learn” how an application works by studying instruction
manuals. This is often achieved by organizing applications with simple hierarchies,
hiding expert-level functionality behind access levels, and taking lessons from the
way popular mobile-phone applications flow.

automotive

Embedded Computing Design www.embedded-computing.com

The implementation of this workflow requires a software architecture that provides
a programming backbone to the “facade” of the topmost layer.

To make the complex look and feel simple, a systematic approach must be chosen to
allow the user to switch between pages or groups of items in an application, navigate
back, reach the “settings,” be interrupted and then easily find their way back to focus.
Using a state-machine architecture allows for the flexibility needed while preserving
the required robustness and testability.

UX-First Layered Approach
Following a UX-first, layered-architecture approach is one way to ease development
of an auto IVI that appeals aesthetically to consumers while providing sought-after
functionality. This type of approach, which includes layers on visualization, presen-
tation, business logic and communication, relies on components to ease the process.

For instance, the visualization and presentation layers provide the user with a way
of interacting with the application. But there is still the implementation of the actual
functionality, for example while the user interface wants to display a list of contacts in
an address book, this data must be retrieved by the application from storage, be it in a
database, on a connected phone, from a simple file, a network connection or elsewhere.

There is a certain block of logic that all applications must implement, the “business
logic” layer. This is where, for instance, the algorithms of a supplier in the agricul-
tural industry determine whether and where the level of product sprayed on a field
can be optimized. Organizing this logic and decoupling it from the presentation and
visualization layers is of highest importance for the effectiveness of the application-
development process. For companies aiming to provide superior user experiences,
this layer is where they have the greatest potential for differentiation.

During the development process, certain components that require specialized hard-
ware or long-running processes must be “mocked out”—replaced by simulated func-
tionality. A system based on interfaces and plugins can be deployed to achieve this
goal where the presentation layers of the application access the business logic through
a well-determined set of interfaces, and hence isolate from changes or the ongoing
development process in these layers. Usability of an application can then be tested
with the help of mocked-up data and simulation. This process has been shown to lead
to more cost-effective and more usable, complete and better applications.

That’s where the communication layer
comes in.

To achieve the aforementioned goals,
nearly all modern applications commu-
nicate in some way. Automotive IVIs
often use a CANBus layer to determine
the state of various vehicle subsystems,
while medical devices have verified and
validated communication libraries that
could, for example, make a robot arm
perform a highly precise movement
during a surgery.

In addition, nearly all applications need
to be updatable, able to deliver infor-
mation about their use for aggregation
and marketing purposes, or simply need
online database access to be fully useful.
Grouping this part of the application’s
logic into a communication layer is there-
fore a logical choice and brings many
advantages with it.

C o m m u n i c a t i o n c h a n n e l s c a n b e
exchanged without having to rewrite the
application. Safety and security can be
focused and implemented in few places,
which minimizes the attack surface. And
layered implementation allows for opti-
mizations that keep an application “alive”
while important processes happen in the
background. Non-blocking communica-
tion patterns are much easier to achieve
when the architecture is built on a
communication layer.

Sample 4-Layered Architecture
Here’s an overview of Integrated
Computer Solutions’ version of a layered
approach showing clear separation of
functionality suitable especially for all
projects that must comply with safety
regulations. Engineering in this way
enforces clean and maintainable soft-
ware ideally suited for integration and
unit testing.

The four independent layers of this
architecture are defined by testable and
mockable interfaces. Loose coupling is
enforced for all communication from
the lower to the upper layers. This guar-
antees independence of the backend
from the frontend. So-called signals

ICS
www.ics.com

Twitter
@icsonqt

LinkedIn
www.linkedin.com/company/integratedcomputer-solutions-inc./

Embedded Computing Design www.embedded-computing.com

automotive

Figure 1 Four-Layer Software Architecture

can be implemented easily using many
common frameworks. All top layers can
by convention make calls to the layers
below through APIs and interfaces. This
creates tight coupling top to bottom
where it is important to ensure deter-
ministic communication patterns and
execution of application logic.

These are the roles of the
individual layers:

1. The Visualization Layer is respon-
sible for everything the user sees
and interacts with on screen.
It is responsible for displaying
all text, images, icons, themes,
styles, animations and more .

The layer can be implemented
using many different technologies.
(We often recommend the use of
the Qt framework and in that case
this layer would be implemented
using Qt’s QtQuick module.)

2. The Presentation Layer maintains
application and user interface states.
It is responsible for storing values
shown on the screen. For example,
a value set on a dial is stored in the
presentation layer, but is displayed in
the visualization layer. The presen-
tation layer implements the applica-
tion’s workflow and all interaction
of the workflow with the backend
(e.g. if an error message from the
backend arrives, the presentation
layer logic displays the dialog on
the screen that contains the error
message).

3. The Application Logic Layer imple-
ments the business logic of the
application. It is responsible for
data storage, database interaction,
handling of events from the backend
and interaction with the frontend.
This layer handles the “domain
knowledge” needed for the imple-
mentation of the user interface.
For the current application this
layer will, for instance, implement
the business logic of “Test Runs,”
“View Results,” “User Management”
and nearly all other tasks defined
in the Software Requirements
Specification.

4. The Communications Layer implements the communication with hardware devices,
networks, or other systems. Hardware partners will often be responsible for
providing interfaces for the actual hardware and will implement the communi-
cation routines necessary using mutually developed APIs. This layer specifically
allows the use of mockable interfaces that can be tested independently before
the actual hardware is completed and available.

This well-defined architecture facilitates use of reusable code, and decoupling the
layers enables the division of work between UX designers, UI implementation, busi-
ness logic providers and hardware partners. It further allows easy assignment of tasks
to the right skill set. Taken as a whole, these characteristics greatly reduce project
development risk. Further, this layered architecture approach allows companies to
build prototypes much faster and iterate workflow with UX designers immediately.

To keep pace with consumer demand, automakers must accelerate the speed at which
they build appealing, secure infotainment systems. Relying on a layered software archi-
tecture that incorporates reusable code rather than leaning on less well-defined mobile
technologies can dramatically shrink time to market so automakers can speed across
the finish line in record time.

Roland Krause is the Engineering Director for Integrated Computer
Solutions, Inc. (ICS). He is the software architect behind the compa-
ny’s Automotive offerings and has more than a decade experi-
ence developing large-scale and embedded software systems. He
received Master’s and Doctoral degrees in engineering from the
Universität Dortmund and is fluent in both German and English.

Embedded Computing Design www.embedded-computing.com

automotive

