
OpenGL Quick Reference

www.ics.com
Integrated
Computer
Solutions

Page 1 of 2OpenGL, 7-June-2016 Copyright © 2016 Integrated Computer Solutions, Inc.

Helper Functions:

void initBindFbo()
•	 creates an openGL framebuffer object
		 glGenFramebuffers(1, &internalFbo);
		 glBindFramebuffer(GL_FRAMEBUFFER, internalFbo);

void initTexture(int target, int width, int height, bool mipmap)
•	 constructs a texture object;
		 glGenTexture(1, &internalTexture)
		 glBindTexture(target, internalTexture);
		 glTexParameter(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
		 glTexParameter(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		 glTexParameter(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
		 glTexParameter(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
		 glTexImage2D(target, 0, GL_RGBA[8], width, height, 0, GL_RGBA, GL_UNSIGNEDBYTE);
		 if (mipmap)
			 for(int level=0; width>1 || height>1;)
				 width=max(1,width>>1);
				 height=max(1,height>>1);
				 glTexImage2D(target, ++level, GL_RGBA[8], width, height, 0, GL_RGBA, GL_
				 UNSIGNED_BYTE, NULL);
	 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, target,
	 internalTexture);
	 glBindTexture(target, 0);

void initColorBuffer(int width, int height, int samples)
•	 constructs a multi-sample color render buffer;
	 glGenRenderbuffers(1, & internalColorBuffer);
	 glBindRenderbuffer(GL_RENDERBUFFER, internalColorBuffer);
	 glRenderbufferStorageMultisample(GL_RENDERBUFFER, samples, GL_RGBA8, 		
 width, height, GL_RENDERBUFFER, internalColorBuffer);
	 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 		
 GL_RENDERBUFFER,internalColorBuffer);

void initPackedDepthStencil(int samples, int width, int height)
•	 constructs a packed depth stencil render buffer;
	 glGenRenderbuffers(1, &internalDepthBuffer);
	 glBindRenderbuffer(GL_RENDERBUFFER, internalDepthBuffer);
	 if (samples == 0) then
		 glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8);
	 else
		 glRenderbufferStorageMultismaple(GL_RENDERBUFFER, samples, GL_			
	 DEPTH24_STENCIL8, width, height)
	 glFrameBufferRenderBuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
	 GL_RENDERBUFFER, internalDepthBuffer);
	 glFrameBufferRenderBuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
	 GL_RENDERBUFFER, internalDepthBuffer);

void initComponentDepth(int samples, int width, int height)
•	 constructs a depth render buffer;
	 glGenRenderbuffers(1, &internalDepthBuffer);
	 glBindRenderbuffer(GL_RENDERBUFFER, internalDepthBuffer);
	 if (samples == 0)
		

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT[24/16], width,
 height);
	 else
		 glRenderBufferStorageMultisample(GL_RENDERBUFFER, samples, GL_DEPTH_
		 COMPONENT[24/16], width, height);
	 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
	 GL_RENDERBUFFER,internalDepthBuffer);

void initComponentStencil(int samples, int width, int height)
•	 constructs a stencil render buffer;
	 glGenRenderbuffers(1, &internalStencilBuffer);
	 glBindRenderbuffer(GL_RENDERBUFFER, internalStencilBuffer);
	 if (samples == 0)
		 glRenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX[8], width, height);
	 else
		 glRenderBufferStorageMultisample(GL_RENDERBUFFER, samples, GL_STENCIL_
		 INDEX[8], width, height);
	 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
	 GL_RENDERBUFFER,internalStencilBuffer);

void initDepthStencil(Attachment attachment, int samples, int width, int height)
•	 construct depth/stencil buffer(s)	
	 if (attachment==CombinedDepthStencil)
		 if (the OpenGL driver supports Packed_Depth_Stencil)
			 initPackedDepthStencil(samples, width, height);
		 else
		 	 initComponentDepth(samples, width, height);
			 initComponentStencil(samples, width, height);
	 else if (attachment==Depth)
		 initComponentDepth(samples, width, height);

void init(int width, int height, Attachment attachment, GLenum target, GLenum
 internalFormat, bool mipmap)
•	 create a non-multisampled FBO with a Texture color surface
		 initBindFbo()
		 initTexture(samples, width, height);
		 initDepthStencil(attachment, 0, width, height);
		 glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE;

void init(int width, int height, Attachment attachment, int samples)
•	 create a multisampled FBO with a Renderbuffer color surface
initBindFbo()
initColorBuffer(target, width, height);
initDepthStencil(attachment, 0, width, height);
glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE;

void init(int width, int height, const QOpenGLFramebufferObjectFormat& format)
•	 create either a non-multisampled or multisampled FBO depending on the format’s

 samples() value.
		 if (format.samples() == 0)
			 Init(width, height, format.attachment(), format.target(), format.internalFormat(),
			 format.mipmap());
		 else
			 Init(width, height, format.attachment(), format.samples());

•	 wraps a single OpenGL framebuffer
object with renderbuffers used as
color attachments for multi-sampled
surfaces and textures used for color
attachments for normal surfaces.

•	 depth/stencil attachments are
optional, but are implemented
with renderbuffers if requested.

•	encapsulates all aspects of depth/
stencil attachments include various
depth bit-sizes

•	wraps texture construction
and configuration

•	wraps glBlitFramebuffer call
•	 unlike QOpenGLBuffer objects you

must have a valid OpenGL context
before calling a constructor

Framebuffer Objects:
QOpenGLFrameBuffer

enum Attachment { NoAttachment,
CombinedDepthStencil, Depth };
QOpenGLFrameBufferFormat
•	 helper class used to describe

parameters for fbo and fbo surfaces
	 void setAttachment(QOpenGL
	 FramebufferObject::Attachment
	 attachment);

	 void setSamples(int samples);

	 void setMipmap(bool torf);

	 void setAttachment(Attachment
	 attachment);

	 void setTextureTarget
	 (GLenum target);

	 void setInternalTesxtureFormat
 	(GLenuminternalFormat);

Helper Objects

Page 2 of 2OpenGL, 7-June-2016 Copyright © 2016 Integrated Computer Solutions, Inc.

Constructors

bool 	 bind();
•	calls glBindFramebuffer(GL_FRAMEBUFFER, internalFbo);
bool 	 release();
•	calls glBindFramebuffer(GL_FRAMEBUFFER, 0);
void	 setAttachment(Attachment attachment)
•	 rebuilds fbo attachments to the new enum value (see the constructors for

more information)
GLuint 	takeTexture();
•	 takes ownership of the texture created in the constructor
•	 rebuilds a new texture next time the bind() is called

Methods

GLuint 				 handle		 () const;
int 				 width		 () const;
int 				 height		 () const;
QSize 				 size		 () const;
QOpenGLFramebufferObjectFormat 	 format		 () const
GLuint 				 texture		 () const;
QImage 				 toImage		 () const;
QImage 				 toImage		 (bool flipped)const;

Queries

QOpenGLFramebufferObject(int width, int height, Attachment attachment,
GLenum target=GL_TEXTURE_2D, GLenum internalFormat=GL_RGBA[8]);
•	calls Init(width, height, attachment, target, internalFormat, false);

QOpenGLFramebufferObject(const QSize &size, Attachment attachment,
GLenum target=GL_TEXTURE_2D, GLenum internalFormat=GL_RGBA[8]));
•	calls Init(size.width(), size.height(), attachment, target, internalFormat, false);

QOpenGLFramebufferObject(int width, int height, GLenum target =
GL_TEXTURE_2D)
•	calls Init(width, height, NoAttachment, target, GL_RGBA[8], false);

QOpenGLFramebufferObject(const QSize& size, GLenum target =
GL_TEXTURE_2D)
•	 calls Init(size.width(), size.height(), NoAttachment, target, GL_RGBA[8], false);

QOpenGLFramebufferObject(int width, int height, const QOpenGLFramebuffer
ObjectFormat &format)
•	calls Init(width, height, format);

QOpenGLFramebufferObject(const QSize &size, const QOpenGLFramebuffer
ObjectFormat &format)
•	calls Init(size.width(), size.height(), format);

Static Public Members

	 static bool bindDefault();
•	calls glBindFramebuffer(GL_FRAMEBUFFER, 0);
	 static bool hasOpenGLFramebufferObjects();
	 static bool hasOpenGLFramebufferBlit();
	 static void blitFramebuffer(QOpenGLFramebufferObject *target,
	 QOpenGLFramebufferObject *source,
	 GLbitfield buffers = GL_COLOR_BUFFER_BIT,
	 GLenum filter = GL_NEAREST);
•	 calls blitFramebuffer(target, QRect(QPoint(0,0), target?target->size():source->size()),
	 source, QRect(QPoint(0,0), source?source->size():target->size()),
	 buffers, filter);
	 static void blitFramebuffer(QOpenGLFramebufferObject *target, const QRect &targetRect,
	 QOpenGLFramebufferObject *source, const QRect &sourceRect,
	 GLbitfield buffers = GL_COLOR_BUFFER_BIT,
	 GLenum filter = GL_NEAREST);
•	 calls blitFramebuffer(target, targetRect, source, sourceRect, buffers, filter, 0, 0);
 static void blitFramebuffer(QOpenGLFramebufferObject *target, const QRect &targetR,
	 QOpenGLFramebufferObject *source, const QRect &sourceR,
	 GLbitfield buffers,
	 GLenum filter,
	 int readColorAttachmentIndex,
	 int drawColorAttachmentIndex);
•	 blits between framebuffers; either target or source may be NULL (but not both)
	 GLuint prevFbo = 0; glGetIntegerv(GL_FRAMEBUFFER_BINDING, &prevFbo);
	 glBindFramebuffer(GL_READ_FRAMEBUFFER, source ? source->handle() : 0);
	 glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target ? target->handle() : 0);
	 glReadBuffer(GL_COLOR_ATTACHMENT0 + readColorAttachmentIndex);
	 GLenum drawBuf = GL_COLOR_ATTACHMENT0 + drawColorAttachment; glDrawBuffers(1, &drawBuf);
	 glBlitFramebuffer(sourceR.left(), sourceR.top(), sourceR.left() + sourceR.width(), sourceR.top() + sourceR.height(),
	 	 targetR.left(), targetR.top(), targetR.left() + targetR.width(), targetR.top() + targetR.height(),
		 buffers, filter);
	 glBindFramebuffer(GL_FRAMEBUFFER, prevFbo);

