Integrated
Computer
Solutions

OpenGL Quick Reference

Framebuffer Objects:

QOpenGLFrameBuffer

» wraps a single OpenGL framebuffer
object with renderbuffers used as
color attachments for multi-sampled
surfaces and textures used for color
attachments for normal surfaces.

depth/stencil attachments are
optional, but are implemented
with renderbuffers if requested.

encapsulates all aspects of depth/
stencil attachments include various
depth bit-sizes

wraps texture construction
and configuration

wraps glBlitFramebuffer call
unlike QOpenGLBuffer objects you
must have a valid OpenGL context
before calling a constructor

Helper Objects

enum Attachment { NoAttachment,
CombinedDepthStencil, Depth };

QOpenGLFrameBufferFormat
* helper class used to describe
parameters for fbo and fbo surfaces

void setAttachment(QOpenGL
FramebufferObject::Attachment
attachment);

void setSamples(int samples);
void setMipmap(bool torf);

void setAttachment(Attachment
attachment);

void setTextureTarget
(GLenum target);

void setinternalTesxtureFormat
(GLenuminternalFormat);

OpenGL, 7-June-2016

www.ics.com

Helper Functions:

void initBindFbo()

« creates an openGL framebuffer object
glGenFramebuffers(1, &internalFbo);
g/BindFramebuffer(GL_FRAMEBUFFER, internalFbo);

void initTexture(int target, int width, int height, bool mipmap)
« constructs a texture object;
glGenTexture(1, &internalTexture)
glBindTexture(target, internalTexture);
glTexParameter(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameter(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameter(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameter(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTeximage2D(target, 0, GL_RGBA[8], width, height, 0, GL_RGBA, GL_UNSIGNEDBYTE);
if (mipmap)
for(int level=0; width>1 || height>1;)
width=max(1,width>>1);
height=max(1,height>>1);
glTexlmage2D(target, ++level, GL_RGBA[8], width, height, 0, GL_RGBA, GL_
UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, target,
internalTexture);
g/BindTexture(target, 0);

void initColorBuffer(int width, int height, int samples)
« constructs a multi-sample color render buffer;
glGenRenderbuffers(1, & internalColorBuffer);
g/BindRenderbuffer(GL_RENDERBUFFER, internalColorBuffer);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, samples, GL_RGBAS,
width, height, GL_RENDERBUFFER, internalColorBuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,
GL_RENDERBUFFER,internalColorBuffer);

void initPackedDepthStencil(int samples, int width, int height)
« constructs a packed depth stencil render buffer;
glGenRenderbuffers(1, &internalDepthBuffer);
g/BindRenderbuffer(GL_RENDERBUFFER, internalDepthBuffer);
if (samples == 0) then
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCILS8);
else
g/RenderbufferStorageMultismaple(GL_RENDERBUFFER, samples, GL_
DEPTH24_STENCILS8, width, height)
glFrameBufferRenderBuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, internalDepthBuffer);
glFrameBufferRenderBuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, internalDepthBuffer);

void initComponentDepth(int samples, int width, int height)

« constructs a depth render buffer;
glGenRenderbuffers(1, &internalDepthBuffer);
g/BindRenderbuffer(GL_RENDERBUFFER, internalDepthBuffer);
if (samples == 0)

Copyright © 2016 Integrated Computer Solutions, Inc.

g/IRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT[24/16], width,
height);
else
glRenderBufferStorageMultisample(GL_RENDERBUFFER, samples, GL_DEPTH_
COMPONENT[24/16], width, height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, internalDepthBuffer);

void initComponentStencil(int samples, int width, int height)
constructs a stencil render buffer;
glGenRenderbuffers(1, &internalStencilBuffer);
g/BindRenderbuffer(GL_RENDERBUFFER, internalStencilBuffer);
if (samples == 0)
glRenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX]8], width, height);
else
glRenderBufferStorageMultisample(GL_RENDERBUFFER, samples, GL_STENCIL_
INDEX]8], width, height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, internalStencilBuffer);

void initDepthStencil(Attachment attachment, int samples, int width, int height)
« construct depth/stencil buffer(s)
if (attachment==CombinedDepthStencil)
if (the OpenGL driver supports Packed_Depth_Stencil)
initPackedDepthStencil(samples, width, height);
else
initComponentDepth(samples, width, height);
initComponentStencil(samples, width, height);
else if (attachment==Depth)
initComponentDepth(samples, width, height);

void init(int width, int height, Attachment attachment, GLenum target, GLenum
internalFormat, bool mipmap)
« create a non-multisampled FBO with a Texture color surface
initBindFbo()
initTexture(samples, width, height);
initDepthStencil(attachment, 0, width, height);
glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE;

void init(int width, int height, Attachment attachment, int samples)

« create a multisampled FBO with a Renderbuffer color surface

initBindFbo()

initColorBuffer(target, width, height);

initDepthStencil(attachment, 0, width, height);
glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE;

void init(int width, int height, const QOpenGLFramebufferObjectFormat& format)
« create either a non-multisampled or multisampled FBO depending on the format’s
samples() value.
if (format.samples() == 0)
Init(width, height, format.attachment(), format.target(), format.internalFormat(),
format.mipmap());
else
Init(width, height, format.attachment(), format.samples());

Page 1 of 2

QOpenGLFramebufferObject(int width, int height, Attachment attachment, static bool bindDefault();

GLenum target=GL_TEXTURE_2D, GLenum internalFormat=GL_RGBA[8]); calls g/BindFramebuffer(GL_FRAMEBUFFER, 0);
« calls Init(width, height, attachment, target, internalFormat, false); static bool hasOpenGLFramebufferObjects();
QOpenGLFramebufferObject(const QSize &size, Attachment attachment, static bool hasOpenGLFramebufferBlit();
GLenum target=GL_TEXTURE_2D, GLenum internalFormat=GL_RGBA[8]));
« calls Init(size.width(), size.height(), attachment, target, internalFormat, false);

QOpenGLFramebufferObject(int width, int height, GLenum target =
GL_TEXTURE_2D)

static void blitFramebuffer(QOpenGLFramebufferObject *target,
QOpenGLFramebufferObject *source,
GLbitfield buffers = GL_COLOR_BUFFER_BIT,

- calls Init(width, height, NoAttachment, target, GL_RGBA[8], false); SIS N 2RSS

QOpenGLFramebufferObject(const QSize& size, GLenum target = « calls blitFramebuffer(target, QRect(QPoint(0,0), target?target->size():source->size()),
GL_TEXTURE_2D) source, QRect(QPoint(0,0), source?source->size():target->size()),

« calls Init(size.width(), size.height(), NoAttachment, target, GL_RGBA[8], false); buffers, filter);

QOpenGLFramebufferObject(int width, int height, const QOpenGLFramebuffer static void blitFramebuffer(QOpenGLFramebufferObject *target, const QRect &targetRect,
ObjectFormat &format) QOpenGLFramebufferObject *source, const QRect &sourceRect,

+ calls Init(width, height, format); GLbitfield buffers = GL_COLOR_BUFFER_BIT,
QOpenGLFramebufferObject(const QSize &size, const QOpenGLFramebuffer GLenum filter = GL_NEAREST);

ObjectFormat &format)
« calls Init(size.width(), size.height(), format);

calls blitFramebuffer(target, targetRect, source, sourceRect, buffers, filter, 0, 0);
static void blitFramebuffer(QOpenGLFramebufferObject *target, const QRect &targetR,
QOpenGLFramebufferObject *source, const QRect &sourceR,

i GLenum filter,
bool bind();

- calls glBindFramebuffer(GL_FRAMEBUFFER, internalFbo); L e

bool release(); int drawColorAttachmentindex);

» calls g/IBindFramebuffer(GL_FRAMEBUFFER, 0); blits between framebuffers; either target or source may be NULL (but not both)

void setAttachment(Attachment attachment) GLuint prevFbo = 0; glGetintegerv(GL_FRAMEBUFFER_BINDING, &prevFbo);

« rebuilds fbo attachments to the new enum value (see the constructors for glBindFramebuffer(GL_READ_FRAMEBUFFER, source ? source->handle() : 0);
more information) glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target ? target->handle() : 0);

G:‘auk"et ::/:/(::?sxr:;rzf()the toxture created in the constructor gIReadBuffer(GL_COLOR_ATTACHMENTO + readColorAttachmentindex);

« rebuilds a new texture next time the bind() is called GLenum drawBuf = GL_COLOR_ATTACHMENTO + drawColorAttachment; glDrawBuffers(1, &drawBuf);

glBlitFramebuffer(sourceR.left(), sourceR.top(), sourceR.left() + sourceR.width(), sourceR.top() + sourceR.height(),

“ targetR.left(), targetR.top(), targetR.left() + targetR.width(), targetR.top() + targetR.height(),
buffers, filter);

GLuint handle () const; glBindFramebuffer(GL_FRAMEBUFFER, prevFbo);
int width () const;

int height () const;

QSize size () const;

QOpenGLFramebufferObjectFormat format () const

GLuint texture () const;

Qlmage tolmage () const;

Qlmage tolmage (bool flipped)const;

OpenGL, 7-June-2016 ICS Copyright © 2016 Integrated Computer Solutions, Inc. Page 2 of 2

