
© Integrated Computer Solutions Inc. www.ics.com

QML Programming
Fundamentals and Beyond

QML Models and Views

1

Material based on Qt 5.12
Copyright 2020, Integrated Computers Solutions, Inc. (ICS)
This work may not be reproduced in whole or in part without the express written consent of ICS.

© Integrated Computer Solutions Inc. www.ics.com

Course Outline
Session 1: April 28, Introduction to QML
● About QML
● Properties
● Basic Types

Session 2: May 1, QML Item Placement
● How to correctly size and place items
● When to use Anchors, Layouts and Positioners

Session 3: May 5, Touch Interaction
● QML Signals
● Touch Events
● Single and Multi-Touch
● Swipe and Pinch Gestures

Session 4: May 8, States & Transitions
● Creating and defining states
● Using Transitions

Session 5: May 15, Custom Items & Components
● Creating your own Components
● Creating a Module

Session 6: May 19, Model / View
● Model / View
● QML Models
● QML Views

Session 7: May 22, C++ Integration
● Why expose C++ to QML
● Exposing C++ Objects
● Exposing C++ Classes

2

© Integrated Computer Solutions Inc. www.ics.com

About ICS

ICS Designs User Experiences and Develops Software for
Connected Devices

• Largest source of independent Qt expertise in North America since 2002
• Headquartered in Waltham, MA with offices in California, Canada, Europe
• Includes Boston UX, ICS’ UX design division

• Embedded, touchscreen, mobile and desktop applications
• Exclusive Open Enrollment Training Partner in North America

33

© Integrated Computer Solutions Inc. www.ics.com

UX/UI Design and Development for Connected
Devices Across Many Industries

4

© Integrated Computer Solutions Inc. www.ics.com

Agenda

● Model / View

● Structuring models

● View types available

5

© Integrated Computer Solutions Inc. www.ics.com

What is Model / View?
Qt Model / View in a nutshell
● A model provides data for a view
● A view displays the data from the model
● Similar to the Model / View / Controller design pattern

○ But combine the controller with the view

Why Model / View?
● Isolate the business logic from the UI logic
● Create UI components that are independent

○ Easier Development
○ Easier Testing
○ Easier Maintenance

● More Reuse
○ Reuse your UI logic across multiple views
○ Models can be reused for different views

6

© Integrated Computer Solutions Inc. www.ics.com

Model / View Components
Model:
● Interface to business logic data
● Emits signals when data changes or is appended
● Many common model types are provided by Qt

● C++: QStringList, QVariantList, QAbstractItemModel subclass
● QML: an integer, JavaScript array, ListModel, XmlListModel

View:
● Displays the data structure
● Handles the user interaction with the data
● Qt provides many view types with model support

● QML: ListView, GridView, PathView, TableView (new)
● Model items are accessible through the index property

Delegate:
● Items in a view are rendered and edited by delegates
● The view expects a Component for its delegate property

7

© Integrated Computer Solutions Inc. www.ics.com

Model Types

8

● Standard QML model
○ Integer - read only, the model has no data roles
○ Object instances - properties of the object are the roles
○ JavaScript array - read only, no need for dynamic model updates
○ ListModel - simple hierarchy of QML types

● Additional QML models available in other modules
○ QtLocation - CategoryModel, EditorialModel, ImageModel, etc.
○ QtDataVisulization - ItemModelBarDataProxy, etc.
○ And More from QtBluetooth, QtCharts, QtLabs, QtWebEngine

● C++ models (must be implemented in C++ before use)
○ More complex but more fine-tuned control over data access
○ QStringList, QVariantList, QObjectList, QAbstractItemModel (and subclasses)
○ Subclass QAbstractItemModel for complex data-sets

© Integrated Computer Solutions Inc. www.ics.com

ListModel: Definition
A ListModel defines a free-form list data source
● A simple container of ListElement definitions
● Define a ListModel

○ With an id so that it can be referenced
● Define ListElement child objects

○ Each with a custom name data role
○ The property will be referenced by a delegate

9

ListModel {
 id: people
 ListElement { name: "Alice"; address: "Alice Address" }
 ListElement { name: "Bob" ; address: "Bob Address"}
 ListElement { name: "Jane" ; address: "Jane Address"}
 ListElement { name: "Victor" ; address: "Victor Address"}
 ListElement { name: "Wendy" ; address: "Wendy Address"}
}

© Integrated Computer Solutions Inc. www.ics.com

ListModel: How To Use

A Repeater fetches elements from people
● Using the delegate to display model elements as Text items

A Column arranges them vertically
● Using anchors to make room for the items

10

Column {
 anchors.fill: parent
 Repeater {
 model: people
 delegate: Text{

text: name
}

 }
}

© Integrated Computer Solutions Inc. www.ics.com

Role and Property Name Clash

If a model property shares the same name as delegate properties, the model property needs
to be qualified when invoked inside the delegate using model.<role>

11

ListModel {
id: weirdList

 ListElement { text: "Alice" }
}
Column {
 anchors.fill: parent
 Repeater {
 model: weirdList
 delegate: Text{

// Will not work;
text: text
//Use: text: model.text

}
 }
}

© Integrated Computer Solutions Inc. www.ics.com

ListModel: Working With Items
A ListModel is a dynamic list of items
● Items can be appended, inserted, removed and moved

○ Append item data using JavaScript dictionaries:
 bookmarkModel.append({"title": lineEdit.text})

○ Insert item data using JavaScript dictionaries at a specific index:
 bookmarkModel.insert(index, {"title": lineEdit.text})

○ Remove items by index obtained from a ListView
 bookmarkModel.remove(listView.currentIndex)

○ Move a number of items between two indices:
 bookmarkModel.move(listView.currentIndex,
 listView.currentIndex + 1, numberOfItems)

● Roles (item types) may be dynamic
○ Set dynamicRoles property to true
○ Strongly discouraged
○ Using dynamic roles is 4-6 times slower than using static ones
○ Use QVariantMap instead

12

© Integrated Computer Solutions Inc. www.ics.com

Integers As Models
An integer can be used as a model that contains a certain number of types.
● In this case, the model does not have any data roles
● Note: The limit on the number of items in an integer model is 100,000,000

13

Item {
 width: 100; height: 200
 Component {
 id: itemDelegate
 Text { text: "item number: " + index }
 }
 ListView {
 anchors.fill: parent
 model: 5
 delegate: itemDelegate
 }
}

© Integrated Computer Solutions Inc. www.ics.com

View Types

14

Standard views
● GridView
● ListView
● TableView

More view types provided in other modules
● Qt Location - MapObjectView, MapItemView
● QtQuick Controls 2 - StackView, ScrollView, SwipeView
● QtCharts - ChartView, PolarChartView
● And More…

© Integrated Computer Solutions Inc. www.ics.com

View Previews

15

ListView GridView TableView

© Integrated Computer Solutions Inc. www.ics.com

Defining a Delegate

16

● Define a Component to use as a delegate
○ With an id so that it can be referenced
○ Describes how each model index will be displayed

● Properties of list elements can be referenced
○ Use a Text item for each list element
○ Use the value of the name data role from each list element

Component {
 id: nameDelegate
 Text {
 text: name
 font.pixelSize: 32
}}
ListView{

model: nameModel
delegate: nameDelegate

}

© Integrated Computer Solutions Inc. www.ics.com

Delegates, Contexts, and Attached Properties
● Each property is exposed in one context

○ defines how the property can be accessed together with the scope rules
● Repeater, Instantiator,and View types expose properties to delegate

instances in sub-contexts
○ Allows the parent to expose properties that are visible in the sub-context only
○ index and modelData (if the model is a string or object list) roles available to the delegate

● Views also provide attached properties to delegates

17

Component {
 id: nameDelegate
 Text {
 property var listView: ListView.view
 text: name; font.pixelSize: 32
 color: (listView.currentIndex === index) ? "red" : "black"
 }
}

© Integrated Computer Solutions Inc. www.ics.com

ListView
● A ListView has model and delegate properties.
● Items can be laid horizontally or vertically
● ListViews are flickable since it inherits from Flickable type.

18

Item {
 width: 100; height: 200
 Component {
 id: itemDelegate
 Text { text: name }
 }
 ListView {
 anchors.fill: parent
 model: people
 delegate: itemDelegate
 }
}

© Integrated Computer Solutions Inc. www.ics.com

● The setup is the same as with ListView
● Uses data from a list model

○ Unlike TableView
○ Think of it as ListView in “icon mode”

GridView

19

ListModel {
 id: iconList
 ListElement { label: "rocket"; iconImage: "file://rocketImage.jpg" }

...
}

GridView {
 anchors.fill: parent
 model: iconList
 delegate: iconDelegate
 clip: true
}

© Integrated Computer Solutions Inc. www.ics.com

Set up the delegate:

GridView

20

Component {
 id: iconDelegate
 Column {
 Image {
 id: delegateImage
 anchors.horizontalCenter: delegateText.horizontalCenter
 source: iconImage; width: 64; height: 64; smooth: true
 fillMode: Image.PreserveAspectFit
 }
 Text {
 id: delegateText
 text: label; font.pixelSize: 24
 }
 }
}

© Integrated Computer Solutions Inc. www.ics.com

GridView is also undecorated and a flickable by default

● To add decoration:
○ Define a header and footer

○ Define a highlight delegate to show the current item

● To configure for navigation
○ Set focus to allow keyboard navigation

○ highlight also helps the user with navigation

○ Unset interactive to disable dragging and flicking

GridView: Decoration and Navigation

21

© Integrated Computer Solutions Inc. www.ics.com

GridView: Decoration and Navigation

22

GridView {
 ...
 focus: true

clip: true

 header: Rectangle {
 width: parent.width; height: 10
 color: "pink"
 }
 footer: Rectangle {
 width: parent.width; height: 10
 color: "lightblue"
 }
 highlight: Rectangle {
 width: parent.width
 color: "lightgray"
 }
}

© Integrated Computer Solutions Inc. www.ics.com

TableView

23

● TableView is new as of Qt 5.12
○ import QtQuick 2.12

● Don’t confuse it with the QtQuick Controls 1 TableView
○ This element has known performance issues

● Only a subsection of the table is normally visible in the viewport
○ TableView inherits Flickable, if you flick

■ New rows and columns enter the viewport, and old ones are removed
■ Rows and columns that move out are reused
■ TableView supports models of any size without affecting performance

● A TableView can display ListModel data
○ But it will only populate the first column in a TableView

● To create models with multiple columns:
○ Create a model in C++ that inherits QAbstractTableModel, and expose it to QML

© Integrated Computer Solutions Inc. www.ics.com 24

© Integrated Computer Solutions Inc. www.ics.com

Q&A Session

25

If you have additional questions or feedback,
please contact us at QtTraining@ics.com

COMING SOON!

Hands-on Virtual Training:
Building an Embedded Device Application with Qt

Course begins July 14

More details and registration available early June

mailto:QtTraining@ics.com

